
SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics

O08

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION*

ANDREW W. APPEL

Abstract. The simulation of N particles interacting in a gravitational force field is useful in astrophysics,
but such simulations become costly for large N. Representing the universe as a tree structure with the
particles at the leaves and internal nodes labeled with the centers of mass of their descendants allows several
simultaneous attacks on the computation time required by the problem. These approaches range from
algorithmic changes (replacing an O(N’) algorithm with an algorithm whose time-complexity is believed
to be O(N log N)) to data structure modifications, code-tuning, and hardware modifications. The changes
reduced the running time of a large problem (N 10,000) by a factor of four hundred. This paper describes
both the particular program and the methodology underlying such speedups.

1. Introduction. Isaac Newton calculated the behavior of two particles interacting
through the force of gravity, but he was unable to solve the equations for three particles.
In this he was not alone [7, p. 634], and systems of three or more particles can be
solved only numerically. Iterative methods are usually used, computing at each discrete
time interval the force on each particle, and then computing the new velocities and
positions for each particle.

A naive implementation of an iterative many-body simulator is computationally
very expensive for large numbers of particles, where "expensive" means days of Cray-1
time or a year of VAX time. This paper describes the development of an efficient
program in which several aspects of the computation were made faster. The initial
step was the use of a new algorithm with lower asymptotic time complexity; the use
of a better algorithm is often the way to achieve the greatest gains in speed [2].

Since every particle attracts each of the others by the force of gravity, there are
O(N2) interactions to compute for every iteration. Furthermore, for the same reasons
that the closed form integral diverges for small distances (since the force is proportional
to the inverse square of the distance between two bodies), the discrete time interval
must be made extremely small in the case that two particles pass very close to each
other. These are the two problems on which the algorithmic attack concentrated. By
the use of an appropriate data structure, each iteration can be done in time believed
to be O(N log N), and the time intervals may be made much larger, thus reducing
the number of iterations required. The algorithm is applicable to N-body problems in
any force field with no dipole moments; it is particularly useful when there is a severe
nonuniformity in the particle distribution or when a large dynamic range is required
(that is, when several distance scales in the simulation are of interest).

The use of an algorithm with a better asymptotic time complexity yielded a
significant improvement in running time. Four additional attacks on the problem were
also undertaken, each of which yielded at least a factor of two improvement in speed.
These attacks ranged from insights into the physics down to hand-coding a routine in
assembly language. By finding savings at many design levels, the execution time of a
large simulation was reduced from (an estimated) 8,000 hours to 20 (actual) hours.
The program was used to investigate open problems in cosmology, giving evidence to
support a model of the universe with random initial mass distribution and high mass
density.

* Received by the editors March 24, 1983, and in revised form October 1, 1983.
r Computer Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213. This

research was supported by a National Science Foundation Graduate Student Fellowship and by the office
of Naval Research under grant N00014-76-C-0370.

85



86 ANDREW W. APPEL

This paper describes the problem and its solution, considered from the point of
view of a computer scientist approaching a software engineering problem. Thus, only
a brief overview of the physics is given; the emphasis is on techniques of writing
efficient software. Section 2 explains the nature of the cosmological questions that can
be answered by many-body simulations. Section 3 describes some old algorithms for
such simulations, 4 introduces the data structure and the algorithm to reduce the
time per iteration, and 5 shows how to use the data structure to reduce the number
of iterations. Section 6 shows how to create the structure and how to keep it from
becoming distorted. Section 7 describes an implementation of the algorithm. The
techniques used to attain speedups at various design levels are described. These
speedups are summarized and the design methodology leading to them is discussed
in 8.

2. Applications in astrophysics. The search for a faster algorithm to compute
many-body interactions in a gravitational force field was motivated by two important
questions in cosmology that can be investigated by simulating gravitational interactions
of tens of thousands of galaxies. An efficient computer program has made it feasible
to do such simulations. This section describes the cosmological applications, and the
remaining sections describe the program.

2.1. How did galaxies orm? It is generally believed that the early universe was
radiation-dominated, that is, that most of the energy of the universe was in the form
of photons, and the forces on a typical particle were primarily electromagnetic. The
present universe, however, is mass-dominated, with most of the energy condensed into
massive bodies (such as stars), and the primary interaction between these bodies being
gravitational (the gravitational force between the Earth and Sun, for example, com-
pletely dominates the "solar wind" of photons pushing the Earth away from the Sun).

The transition between a radiation-dominated and mass-dominated universe prob-
ably took place relatively suddenly; after that, massive bodies such as galaxies began
to form (they would have been torn apart in a radiation-dominated universe). Two of
the competing theories describing the formation of galaxies [21] may be characterized
as "top-down" and "bottom-up," respectively.

In the "top-down" theory [22], galaxy clusters formed as a result of long-range
pressure waves left over from the radiation-dominated universe. A pressure wave
contains alternating regions of high and low density. When the universe "condensed"
and the radiation disappeared, there would be no medium to support the waves, but
the regions of high and low mass-density would remain. It is proposed that the regions
of high density became super-clusters of galaxies; that galaxies formed within these
super-clusters; and that stars formed within the galaxies. Two-dimensional simulations
under these assumptions have shown a cell-like structuring of the clusters [9]; it is not
clear whether the dimensionality of the simulation is responsible. It may be that these
cells exist in the present universe [14], but the observations at large distances are not
conclusive.

In the "bottom-up" theory [17], there were no pressure waves, and the universe
immediately after condensation consisted of randomly distributed hydrogen molecules.
In a random distribution, there will be local fluctuations in mass density, and as the
universe expands, the denser regions will tend to cohere, while the regions of lower
density will expand. This will tend to increase the size of the fluctuations, forming
stars. More expansion will increase the size of the fluctuations to that of galaxies and
eventually of clusters and super-clusters of galaxies. The clusters will have a more
random structure than in the "top-down" model.



....... o... ’.’....: ..-.........,..;:,’.. ..,..... ,... :.. ..: ...........,.... :. ,:........,.... "’..;>"
,.’...." "’:’, .’. :’-: :. ,’. ".’..:.. :, ..’" "." .:" ...:’: ’".. ". :’..... "..’.: .’ :...".. ".,.,.;... :’:: .’.:....:.’..,, -’..’,....,,:,.......- .!. "..’....: ....’:..’.,:..:’:.’.. ...., ...... ..:..........:: -......:,: .;..".’. ....

.."...’.... ...." :...’...:: ...., ".... "..* :. ........’..’.. ...
o:.. .,:. ,.."., ."." ,.:..".: .."’.. ::.’.’. .’.:" ..’...’." .".’. ..:

.?’:...;....’:....’::..’.: .:.’;.. :’:..". ".. .:." .:. ?...". ";.. ,’," ;’ ".. .’..." ".’"..2 "...’:’..:.’".761 !?;’;.7 :.".?. :..’",.’,-:’,".
".;.." ....:. 4: .’" ," :. "’" "’; ....’: "S ":" "’...’.".2" . .." ..t", :.

:.’..’..::... ,..’..,;.,"..’ :.’.;.t. :".;.’:::.’.’, : .’...:’.." .’?....;. "..... :.".’.. .. :.:.:2 "’:., ::".: "::.’.’.:’:’,, :’t.’...."’,
;’..," .:...:’., ..:;’." :..: ". ..". ." ".’..:’.’. :’ V....,.:’" ":.,"," ;::..X,,’:’::-.I’ 4

:’’Ul’". .’, ,"’.’ .." "’?!’..; ::.:"’>.", );:. ::.": !-(:, }:’..’: :Y ".;",. ". "":"i" :.,. ’:":::.: :i:’.’.’:’... ’’...’:."..’)
I’:’" ""’:" "’":’’:’: "" ";’" ":" "" ::""" ":"":"’"?’"""’" "’’"’"" "’"’"’" """ ":" "’"""’’" "’’’ill".’.:" ".."" ".> ".’i..?.::’". ".’:"’.’." (.’".!’::"" "" ’:.’. "":" "’...’..7.1.,?.,.;- ’}."":,:. ,"’.." .’.’...’.."".."...".

v’:"." :,’.’-’:" "’:.:: ";.-.".’. :’"..’" 3’ "."" .."." "..’. "-. ;’:" ":’: ’..;: .’..."
,,..’".’, .’.’ ":.3.’-’-." .:’": ::" """.".... :’: ’"’;" ;" "’"’.’:""< :" "" ; :"" "’" "":: "." "’,:’. """’’’", ""I i.,.:. ..-...:, :::; i’..., :.;:..i ?;:"." il,;i".: ".:..:::L .. , ::"!.!....: ;!...:; .i:...;...:.;:;;:. ;.:
n.’" ""::" ""’" ""’"" -’’ "’"’":’ .’. ’..’k .,..., ..... ..... ".... q
I’.::! ,...:,’... ::.:" ..,." .’.’... .:...: ....:.’:. ,... .:.; ";,.". .:..’... ".’..’.’.:... ,:..:.., :....’." .....:.’...’...’ ,.,.

:." .’" :..’....I ,..:. . "..;I:.: ’. ".’," .’.’d ".:,’. "":" :.. "". .-...;’.’..." ,>.’." ..’.". P. ".t:" .:"

F: :.:: ,,... .,. .,.. ..: ,..., ...]......
3"...’:/;:".. "..’.’. ::’.... "...’.:.,:.. "..".f " ..;". "’ :’..,..:: .9.". ".". L"-::" :".,:: .". :..-.." :.:’..""f:’J;""’" :’".... "" ;:’’" "’"’" ’"’"""’" :’’"":’"::";’" "’;’;’’" ": "’’ :’" "4..’.?..’.’ ...’..:’.,..’.?..’;’.:."

Ii .:?2:..: :.:..,::, ..:.:,:.,.?. :,!-::. :.:.::..... ::..;:}:i; ?"::".:i" ::t .:. ::. ..’.,.:: ,7. Y:,.." ’:.:ii?i:".’;.:..::. ’);l..:..o..’ :’:... .....’:"’- .,".’,- t.’-...’:x... "’...’..,.. :’..:."" ...’. :.’. .," ..." :;...’;"’. ’ :" "’:’..’- :.’" "’.:’." ."* .’’. .:.e: "’. ..li,’.. ".. "....’. ".. ., ",.’. .’.’.’,’t. ","" .:: ;. ,:.i.,, t.’,....... ...;" :...:... .:." .:’

3" 1.o00000 (a)

87

T= 19.012801 (b)

FIG. 2.1. Result of a simulation. An initial randomly generated configuration of 10,000 galaxies, and
the result of simulating the gravitational interactions of this configuration as the universe expands by a factor
of 7.12, with mass density p Pcri, as a parameter of the simulation. The particles are in a three-dimensional
space which has been projected into two dimensions for this picture. A periodic coordinate system is used in
which the two extreme points in each dimension are identified. The pictures are scaled to the expansion factor
of the simulated universe.



88 ANDREW W. APPEL

In both theories, the only significant interactions between galaxies after the
condensation are gravitational. A simulation of the motion of many particles with
gravitational interactions can therefore test these theories. A ten-thousand-galaxy,
three-dimensional simulation testing the "bottom-up" theory (that is, starting with a
uniform random distribution of particle positions) has been done using the techniques
described in the remainder of this paper. The result of the simulation is clustering
consistent with that observed by astronomers (see Fig. 2.1 for a picture of the
simulation’s output). A similar test of the "top-down" theory has not yet been done,
but since this theory differs from the "bottom-up" theory primarily in its specification
of the distribution of the initihl placement of the particles, it could be simulated easily
using the same algorithm.

The large-scale simulations done using the program described in 3 through 6
of this paper seem to imply that the bottorh-up model can explain the present mass
distribution of the universe quite well, without the complicated assumptions inherent
in the top-down model.

2.2. Is the universe open or closed? One of the fundamental questions in cos-
mology is whether the universe will continue expanding forever, or whether it will
eventually collapse in a gigantic reversal of the "big bang." One way to answer this
question is to look at the mass density of the universe. If the density of the universemp
is below a certain "critical density"mpcritmthen expansion will continue forever;
otherwise it will contract. Unfortunately, it is difficult to measure the mass density of
the universe. Astrophysicists have been able to make estimates; most observational
estimates put the mass density at about a tenth of the critical density. There are reasons
for believing that the P/Pcrit should be exactly equal to 1. For example, any deviation
of p from Pcrit in the early universe (t 1 sec) would be enormously amplified as the
universe expanded, making the current measured value of/9 0.1pcri far too close to
have happened by chance [8].

The astronomical search for the "missing mass"--to determine whether P/Pcrit is
closer to 0.1 or to 1.0mis complicated by the fact that many forms of mass (such as
black holes) are difficult to observe directly. This problem can be avoided by approaches
that do not involve direct observation of the mass density. One such approach is
through simulation of the gravitational interactions of galaxies under different assump-
tions about the mass density. Groth et al. [12] observed in small simulations that low
mass densities will not lead to the amount of clustering actually observed, and that
the critical density would lead to such clustering. The ten-thousand-body, three-
dimensional simulation using the program described later in this paper was for the
higher-density case; large-scale clustering was observed, lending support to this theory.
The lower-density case can be examined by the same techniques.

3. Previous algorithms. Because the N-body problem cannot be done in closed
form, the calculation must be done numerically. That is, at each time t, the gravitational
forces of each mass on each of the others may be computed by Newton’s laws. (For
an appropriate range of distancesmsay, between one and a few hundred million
light-yearsmNewton’s laws are a good approximation to general relativity [17].) Using
the inverse-square force law, an approximation to the true acceleration and velocity
of each particle over a time dt can be computed. By many iterations of this method,
the position of each particle after an arbitrary length of time may be found.

3.1. A simple algorithm. Newton’s law of gravity states that the force between
any pair of particles is proportional to the product of their masses divided by the



AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION 89

square of the distance between them. Stated as a vector equation,

mir’[
Grnirnj(rj ri)

where l’i is the position vector of particle i, r,’.’ is the acceleration vector of particle i,
and G is the universal gravitational constant.

When there are many particles, the acceleration of each particle is given by the
sum of the accelerations (as computed by Newton’s law) induced by all the other
particles. This is simply a large set of differential equations. For two bodies, it is
solvable in closed form; however, for more than two bodies no closed form solution
exists.

The differential equation can be integrated numerically using a "naive" algorithm.
At each iteration, compute the acceleration acting upon each particle; from this,
compute a modified velocity over the next time increment, and then compute the
position of each particle at the end of the time increment by calculating

l’new l’old -I- dt.

The time increment dt must be made small enough that the accelerations do not greatly
change between and + dt.

There are two problems with this algorithm. The first is that the number of
interactions is large as a function of the number of particles. In particular, the
gravitational action of each particle on every other particle must be computed every
iteration, requiring a total of N2-N operations. When N is large (physicists would
like to simulate tens of thousands of particles, although they are rarely able to do so),
an O(N2) algorithm is extremely costly to execute.

The second problem in many-body simulations is that it usually happens that
some pairs of particles in such a system will pass very close to each other. Nearby
particles in a gravitational field usually move at high speed with respect to each other;
the combination of high velocities and small distances necessitates an extremely small
time increment between iterations.

One approach to these problems is to use an extremely fast computer. The Cray-1
computer is very fast at algorithms that have a "vectorizable" formulation: that is,
problems which can be expressed in terms of element-by-element arithmetic operations
on long arrays of numbers. The acceleration computation can be formulated in terms
of such large vectors. If the vector instructions of the Cray-1 are used to advantage
(either by hand-coding, or by using the Cray Fortran compiler with a good understand-
ing of what sorts of programs the compiler can generate efficient code for), the time
required to calculate the acceleration between two bodies can be estimated at 100
clock cycles (40 of which are needed for a calculation of a periodic distance function
peculiar to the many-galaxy problem [3]). The time for one clock cycle is 12
nanoseconds [19], and the number of pairs of bodies is N2/2, so the time for one
iteration can be estimated at .6N2 microseconds. Using scalar instructions, or using
vector instructions with inefficient pipeline behavior, would more than double the time
taken per iteration.

Using a similar program to simulate ten thousand bodies over one thousand
iterations requires approximately 8,000 hours of VAX time (this was extrapolated
from observations of 100-particle simulations). Table 3.1 gives the times required for
various implementations of a straightforward simulator. Even on a fast vector processor
like the Cray-1, this simulation takes several hours. The disadvantage to running the



90 ANDREW W. APPEL

simulation on the Cray computer is that the Cray-1 is enormously expensive: at a cost
of eight to ten million dollars it is about 40 times as expensive as a large minicomputer
such as a VAX. A solution whereby the problem can be solved in tens of hours on
the VAX would obviously be preferable to any of the points in the solution space
described in the table below.

TABLE 3.1
Running times, in hours, of an O(N2) program for 10,000 bodies over

1,000 iterations.

VAX-11/780 Cray-1 (estimated)

Optimizing compiler 8000 30
Hand-optimized 5000 16

3.2. Other algorithms in the literature. Two approaches have been taken to
reduce the cost of the acceleration calculation in the N-body problem. One approach
is to represent the problem in a position-velocity phase space, and transform the force
field using a fast Fourier transform into a form where it can be applied in linear time
[15, 16]. This takes O(NlogN) time (dominated by the Fourier transform) per
iteration. However, the phase space must be discrete. This means that all positions
must be multiples of some lattice size a, and that all velocities must be less than some
maximum f. Thus, the (physically interesting) effects of tight clusters cannot be modeled.

Another approach is to keep track, for each particle, of the sets of "nearby"
particles and "faraway" particles [1]. The "faraway" particles may be integrated with
larger time-steps than the "nearby" particles. When the particles are uniformly dis-
tributed, this has an asymptotic complexity of O(Nl5). Unfortunately, when clustering
occurs, the number of "nearby" particles is in the same order of magnitude as the
total number of particles, and the asymptotic complexity is again O(NZ). The problem
of small time-steps is attacked by using a special-case technique for close two-body
interactions, but this technique cannot be applied for tight clusters of three or more
particles.

Another similar approach is to divide the universe into cells, computing the
particle-particle interactions within the cell, and then the cell-cell interactions [13].
This has complexity O(N4/3) for a uniform distribution. A variant of this method is
to compute the cell-cell interactions by a fast Fourier transform, reducing the com-
plexity to O(N log N)). Both variants degrade to a quadratic time-complexity when
severe clustering occurs.

These algorithms are great improvements on the "naive" algorithm, especially
for those problems with a relatively uniform mass distribution. (Problems in plasma
physics are often of this nature, as are some problems in astrophysics.) However, when
a greatly nonuniform mass density is to be simulated, their asymptotic complexity
approaches that of the "naive" algorithm. With none of these algorithms is the problem
of the vanishingly small discrete time-step solved; in the discrete phase-space approach,
the time steps cannot be made smaller and thus information is lost, while in the second
and third approaches, the problem is essentially the same as with the "naive" algorithm.

4. Reducing the complexity of each iteration. To compute the force of gravity
on an apple exerted by the Earth, it suffices to treat the Earth as a point mass; it is
not necessary to sum the forces exerted by each atom of the Earth. This is a consequence



AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION 91

of the spherical symmetry of the Earth; Newton invented the integral calculus to prove
this fact.

When an attracting body is not spherically symmetric, the result obtained by
treating it as a point mass is no longer exact, but it is a good approximation. This
approximation--in which one attraction between a pair of point masses is calculated,
rather than all the attractions between all their constituent particles--is the key to
reducing the asymptotic complexity of computing the accelerations from O(N2) to
O(N log N).

4.1. The monopole approximation. A divide-and-conquer algorithm can solve
the many-body problem in O(N log N) time per iteration, and requires significantly
fewer iterations. The computational complexity has not been proved, but a reasonable
argument is given; furthermore, experience with an implementation of the algorithm
has shown that it runs as quickly as expected.

The algorithm relies upon the following approximation: suppose there are two
particles, ml and m2, each no more than dr from their center of mass (see Fig. 4.1).
The gravitational attraction they exert upon an observer situated a distance r from
the center of mass will be

Gml(r+drl) Gm2(r+dr2) G(ml+m2)r
Ig= ir+drll3

+
ir+dr213 irl3

+O(dr2)"

Because there is no term in dr in this equation, the approximation is good to first order.

observer

FIG. 4.1. The monopole approximation.

Now consider the arrangement of masses shown in Fig. 4.2, which we will suppose
to be a subset of the particles in a many-body simulation. To compute the acceleration
of each particle on every other, we may break the computation into three parts: those
interactions of two particles which are in the left-hand clump, those interactions of
which both particles are in the right-hand clump, and the interactions of a particle
from each clump. The latter interactions may be approximated to order (dr/r) 2 by
using the approximation described in the previous paragraph: by computing one
interaction, as if each of the two clumps were one large mass. The number of
computations required to calculate the intra-clump interaction has thus been reduced
from nl. n2 to 1; the intra-clump calculation remains unchanged.

nl bodies n2 bodies

FIG. 4.2. Two clumps to which the approximation can be applied.



92 ANDREW W. APPEL

Had the two clumps been closer together, then the approximation would no longer
have been as good, since it depends on the value of dr/r. In that case, more calculations
would have had to be done.

4.2. A data structure. A method is needed for finding subsets of the particles for
which the approximation can be made. This is made easier by the introduction of an
appropriate data structure--a binary tree whose leaves are particles and whose internal
nodes represent clumps of particles. Every node will have an associated mass and
position. The leaves will have the mass and position of the particles they represent;
each internal node will have a mass equal to the sum of the masses of its two child
nodes, and a position equal to the center of mass of its child nodes. Also associated
with each clump (internal node) will be the approximate radius of the clump.

It is now a simple matter to compute all of the gravitational interactions between
two clumps that are small relative to their separation, that is,

dr1 r < 6 and dr2 r < 6

for some fixed criterion of accuracy 6. The parameters dr1 and dr2 are stored in the
tree; the positions need only be subtracted and multiplied by the total masses of each
clump (also stored in the tree).

If the accuracy criterion is not satisfied (that is, if the clumps are large and close
together), then the calculation of the interaction of each of the two subclumps of one
clump with each of the two subclumps of the other clump must be made. It is not
always necessary to "break up" both clumps for this calculation; see Fig. 4.3 for an
example in which one clump satisfies the criterion and need not be split, while the
other clump is split into two pieces.

FIG. 4.3. An example of the calculation of clump interaction.

4.3. The algorithm. This algorithm can be coded as the following pair of pseudo-
Pascal recursive proceduresmprocedure ComputeAccel computes all of the acceler-
ations internal to one clump, and procedure TwoNode computes the interactions
between two clumps.

procedure ComputeAccel (B)
begin if B is a nontrivial clump

then begin ComputeAccel(Bleft_child)
ComputeAccel(Bright_child)
TwoNode(Bleft_child, Bright_child)

end
end



AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION 93

procedure TwoNode(A, B)
begin d <-- rB rA

if drA/d > 8) and (drA > drB)
then begin TwoNode(Aleft-child, B)

TwoNode(Aright_child, B)
end

else if drB/ d > 8
then begin TwoNode(A, Bleft_child)

TwoNode(A, Bright_child)
end

else begin AccA <- ACCA + GmBd/d3

Acc <- Acc GmAd/d3

end
end

One detail that for clarity has so far been omitted from the description of the
algorithm pertains to the representation of position, velocity, and acceleration vectors.
Rather than storing at each node the absolute position of the clump associated with
that node, the position vector from the node’s parent to the node is stored. (The same
applies to velocities and accelerations.) This is done in order to minimize round-off
errors in subtractions, which will be discussed in 7. The absolute position of a particle
or clump may be computed by taking the sum of the position offsets of all its ancestors
up to the root, though it is rarely necessary to compute absolute positions. Note that
the algorithm assigns accelerations throughout the data structure, taking advantage of
the relativization of acceleration vectors.

4.4. Analysis of time complexity. If the parameter 8 is set to zero, then the
TwoNode procedure will always recur down to the level of individual particles, and
the accelerations assigned to the internal nodes will be zero. If 8 is not equal to zero,
then the absolute acceleration of a single particle will be an approximation to the true
acceleration. For values of 8 between 0 and 1, the time complexity of ComputeAccel
is estimated (and observed) to be O(N log N).

To see this, consider the number of times a particle X is compared with other
clumps for the purposes of adding to an acceleration vector. Suppose there is a spherical
shell around X of radius r and thickness 8.r. If this shell is filled with clumps of
diameter 8.r, then there will be 4/82 clumps in the shell. The smallest sphere will
have a size such that the expected number of galaxies contained within it is 1; the
largest will enclose a volume such that the expected number of galaxies within it is N.
The quotient of the radii of the largest and smallest spheres will therefore be N1/3.
This will be equal to (1+8) k, where k is the number of shells. Then k=
log (N)! 3 log (1 + 6), and the number of clumps for which there must be calculation
of accelerations with respect to particle X is approximately

4 log N
382 log (1 + 8)"

Note that this number overestimates the number of calculations done, in that
some of the calculation will involve not the comparison of X with another clump, but
the comparison of an enclosing clump of X with another clump. That calculation would
also be counted in this analysis as a calculation for X’s sibling clump, and all other
subclumps of the encompassing clump. However, this will do no more than change



94 ANDREW W. APPEL

the constant of proportionality" for each of the N galaxies, O(log N) calculations must
be done, giving a total execution timemfor fixed 8roof O(N log N).

4.5. Accuracy ot the algorithm. The parameter 8 is a measure of the accuracy
of the calculation. When one clump is compared with another, and the ratio of diameter
to separation is less than 8, then the computed acceleration will have a fractional error
less than 8 2. When all the accelerations that clump X feels from other clumps are
summed, the error in acceleration should be proportional to 82 divided by the square
root of the number of clumps compared with (assuming random directions of the error
vector). A more intuitive explanation of this statistical argument is that larger clumps
will tend to approach some sort of spherically symmetric distribution, simply because
of the large number of randomly positioned particles. In a perfectly spherical distribu-
tion, the error made in assuming that all the mass is positioned at the center is exactly
zero. Thus the error in acceleration, on the average, should be significantly less than 8 2

FIG. 4.4. Scatterplot of components of actual vs. computed accelerations ]’or t 0.3.

In fact, in the distribution of errors (shown in Fig. 4.4) there is a maximum absolute
error range, such that for most particles the error is quite small on an absolute scale.
For particles with large accelerations, the proportional error is practically zero. Figure
4.4 was computed by taking a random distribution of particles and using the (exact)
results computed by running the algorithm with 8-0 as the "actual" acceleration
components, and using the results computed with 8 0.3 as the "Computed" acceler-



AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION 95

ation components. The absolute errors are the deviations from the line y x; the
scatterplot shows a good bound on the absolute error.

In those calculations where the exact final positions of the particles is not as
important as statistics about their configurations, a relatively large value of can be
used (such as 1/2), greatly reducing the constant factor in the running time of the
O(N log N) program.

It is useful to note that although the O(N2) algorithm has theoretically complete
accuracy in computing accelerations, the fact that the time intervals must be made
discrete introduces approximations into any numerical calculation of the N-body
problem. By choosing the parameters so that the errors introduced by each part (the
clump approximation and the discrete-time approximation) are equal, the resulting
error is about equal to that of the standard algorithm.

Since the use of a clumping algorithm to study the formation of galaxy clusters
might conceivably be a cause of systematic error, the result of a simulation using this
algorithm in which no clustering occurred is of interest. In this simulation, the galaxies
were given higher initial velocities than predicted by theory, and no measurable
clustering occurred (as seen both by the human eye and by a correlation function of
interparticle distance).

5. Reducing the number of iterations. When two particles come very close to
each other in an inverse-square force field, their accelerations become extremely high.
To model their behavior accurately, extremely small time steps are required. In any
simulation with a large number of particles, there are bound to be a few such pairs at
any given time; these pairs require the time increments of the simulation to be so
small that the number of iterations required to integrate over a significant interval of
time becomes prohibitively large.

One widely used solution to this problem modifies the force law to limit the
accelerations at small distances. The inherent problem with this approach in the
modeling of galaxy clustering is that the clustering occurs (and should be examined
by the simulation) over all distance scales. To tamper with the force law at small
distances makes any conclusions about clustering at these distances suspect.

Fortunately, the data structure introduced in the previous section leads to a
solution to this problem that preserves the inverse-square properties of the force law
at all distance scales. In 5.1 an aspect of the calculation open to algorithmic attack
is described, and the attack itself is explained in 5.2 and 5.3.

5.1. Characteristic times. The time increment dt between iterations is determined
after each iteration. The usual approach is to use a global dt for all particles. In order
to avoid gross inaccuracies at very small distances, the minimum characteristic time
over all particles must be used for dt. The characteristic time of an object is a measure
of how long it takes for that object’s acceleration to change significantly; the time will
be much shorter for a particle tightly orbiting a neighbor. The occasional tight pairs
and threesomes require an expensively small value for dt in the naive algorithm.

The characteristic time for a clump C is the time in which a child of C will move
a distance of approximately times the child’s distance from C’s center of mass. The
characteristic time could come from a high velocity relative to distance (t) or from a
high acceleration (ta). This is easy to calculate, since the position vector of each child
is stored as the vector from (the center of mass of) C. So the characteristic time of C
is the minimum over both children of t and ta, where

x IPI t. x lvl, xlel=lAIx1/2t].



96 ANDREW W. APPEL

(Note that P, V, and A are the position, velocity, and acceleration vectors of the
children relative to the center of mass of C.) In each iteration, the accelerations are
computed by ComputeAccel and the minimum characteristic time dt is found. The
procedure Move calculates the new velocities and positions:

Vne Vold if- A. dt, Pnew Pond + Vnew" dr.

There are schemes such as Richardson extrapolation [6] which improve on this
"naive" method of integration and allow the use of a larger timestep with great
accuracy. However, the timestep will still be no larger than that allowed by setting
to 2 in the equations for (t) and (ta), whereas in a typical simulation using the
approximation algorithm will be on the order of a tenth anyway. Furthermore, the
extremely high accuracy produced by this method is not particularly useful in the
presence of the acceleration approximation. Finally, using the extrapolation method
would attack the wrong problem: the characteristic time is so small not because 8 is
very small, but because of the existence of a few extremely "tight" clumps where there
is a very high ratio of velocity to separation.

Calculating the minimum characteristic time of the entire universe leads to an
exceedingly small dt. Suppose two or three galaxies get into a tight orbit around each
other; their characteristic time may be an order of magnitude shorter than the charac-
teristic time of any other object in the universe.

It would be nice to be able to iterate small, very tight clusters at shorter time
intervals than the rest of the universe, saving a large amount of calculation. This is
not too difficult; what is needed is a concise criterion to distinguish such clumps.

5.2. Indivisible clumps. Let such a clump be considered to be one object, indivis-
ible, of nonzero radius. Indivisibility will be defined as follows: a clump is indivisible
if for all clumps outside it, its ratio of size to distance is less than 8. What indivisibility
effectively means is that an indivisible clump will nevermthroughout the course of the
acceleration calculations for one iteration--be "split" by procedure TwoNode to
calculate accelerations of its subclumps with respect to any other clump. This is easy
to detect--simply mark clump A in the first then clause or clump B in the second
then clause of procedure TwoNode. Any clump that is never marked during the process
of computing all the accelerations is indivisible.

The reason that this criterion is chosen is that it characterizes very well the set
of clumps such that the external gravitational field acting upon them is an almost
constant function of position within the clump. In fact, the monopole approximation
has the effect of assuming that this field is constant, and the improved moving algorithm
described below takes advantage of this fact.

Procedure Move, procedure ComputeAccel, and the procedure that determines
dt will be altered so that they never look at the internal structure of such a clump.
Note that TwoNode need not be altered, since the way indivisible clumps are defined
implies that TwoNode never looks at their internal structure. Now the problem is
gone: the small, tight cluster of galaxies has become a point (although with nonzero
radius). The time increment dt will be much larger than it could have been otherwise.

The internal motions and accelerations of these tight clumps will have to be
computed every iteration, and in fact it will take several iterations of the tight clump
to compute its motion over the time interval dt. However, these iterations of three or
four objects are replacing iterations over the entire universe.

5.3. Closed form calculations. When an indivisible object itself is a clump contain-
ing two indivisible subclumps (these will usually be simply individual galaxies), then



AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION 97

its orbit may be solved in closed form. In this case, the calculations to resolve internal
motion may be postponed until another clump gets near enough to see the internal
structure of the object. This may be many iterations of the universe latermand many
times more iterations of the tight pair, which typically has a much shorter characteristic
time. Only one calculation needs to be made in closed form to replace these many
iterations; furthermore, this calculation will be exceedingly accurate, since no approxi-
mations are being made internally to the subsystem.

Since indivisibility may occur at several distance scales (indivisible clumps may
contain clumps which themselves contain indivisible clumps, and so on), the tight-clump
calculations (of which the two-body closed form calculation is a special case) may be
done recursively.

6. Managing the data structure. The efficiency of all parts of the algorithm
depends on having the structure of the tree of clumps accurately reflect the structure
of the particles in the simulated space. Under the influence of gravity, the particles
move, distorting the tree. The structure must be maintained and the distortions removed
regularly. Fortunately, this can be done in a simple way.

6.1. Reorganizing the tree. After moving clumps that are not indivisible, the
coordinates of a clump will no longer correspond exactly to the center of mass of the
two subclumps. This is due to a nearby object attracting one subclump more strongly
than the other. It is a simple matter, however, to adjust the position of each clump
after its subclumps have been moved. Sometimes, however, another subclump will
intrude into a clump so that the clumps no longer represent disjoint (in the simulated
three-space) clusters. In this case, it is necessary that the clumps be rearranged (while
keeping the actual galaxies fixed). The condition to aim for is this: for every clump C,
the closest clump to C external to C shall be its parent clump. Let Closest(C) be the
nearest clump with which C is compared during the execution of procedure TwoNode.
If the distance from C to Closest(C) is less than the distance from C to its parent,
then a new clump W will be formed, which will become the subclump of Parent(C)
in place of C. W will contain as subclumps C and Closest(C). Now the old parent
clump of Closest(C) has only one subclump, so it can be liquidated, "promoting" its
subclump. This process is represented in Fig. 6.1.

These adjustments (which shall be known as Grabs) take place immediately after
procedure ComputeAccel finishes running. Each Grab is a purely local phenomenon
in the data structure (only affecting four nodes), and preserves the positions, velocities,
accelerations, and all other important data of the clumps involved. The process of
Grabbing guarantees that close pairs will be subclumps of the same clump, and that

before after

FIG. 6.1. Rearrangement of clumps.



98 ANDREW W. APPEL

(a)

(b)

FIG. 6. Effect of the Grab algorithm. Figure 6.2 illustrates the effect of the Grab algorithm on a
two-dimensional universe. The diagram on the left depicts the clump structure as first created, by alternately
splitting at the median x and y. The diagram on the right shows the structure after several iterations of Grab.
Note that the particles are in the same positions, but the structure is cleaner--close pairs are now all linked
directly together. This improved structure may be measured by the fact that the acceleration calculation on the
improved structure is empirically observed to be about twice as efficient as on the original structure.



AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION 99

the clumps will be close to optimally arranged for quickly computing accelerations.
Although the Grab algorithm does not find the "best" arrangement of clumps, it has
been observed to do a fairly good job in a very short time (see Fig. 6.2).

The TwoNode procedure that calculates the accelerations throughout the tree
also stores information that is used by the rearrangement algorithm in finding candidates
for Grabs. The rearrangement is done after every iteration; it takes time linear in the
number of particles.

6.2. Creating the tree. While grabbing is very useful in maintaining the clump
structure in the face of distortions, it will not be able to create one in the first place
from a randomly arranged set of galaxies. This will be done as follows. The universal
clump---which contains all the galaxies--will be divided initially into two subclumps
chosen so that the first contains all galaxies whose x coordinate is less than the median
x coordinate, and the other subclump will contain all galaxies with x larger than or
equal to the median x.

Each of those subclumps will be divided into two sub-clumps using the median y
as the splitting criterion. Each lower level of clump will be split on z, then x, then y
then z, until the clumps consist of one galaxy each. Note that this procedure does not
require that the number of clumps be a power of two, although that might seem most
natural.

This structure is known as a k-d tree [4]. It has a variety of applications in
multidimensional problems, including searching, nearest-neighbor calculations, classifi-
cation, numerical integration, and computing minimum spanning trees [10], [5], [11].
For a many-body application, a standard k-d tree will be far from optimalmnearby
objects will not be in the same clump much of the time. The Grab procedure, though
its behavior is difficult to analyze theoretically, has been observed to do a very good
job of cleaning up the structure in just two or three iterations (see Fig. 6.2).

7. Implementation of the program. Various algorithmic attacks using the center-
of-mass tree structure have been described in the preceding sections. It is inappropriate
to stop seeking reductions in running time after a good algorithm has been found,
however; significant efficiencies can be achieved in the implementation of a given
algorithm.

The algorithm as described was first implemented in about 1,200 lines of Pascal
on a VAX-11/780. For a problem size of 10,000 galaxies, this first implementation
runs in about forty minutes per iteration, and about 500 iterations are required to
simulate the expansion of the universe by a factor of 100. Under the general relativistic
assumptions made, letting run from 1 to 1,000 causes the distance scales to run from
1 to 100, because distance is proportional to 2/3. Accelerations are transformed at
each iteration to correspond with the changing distance scale [3]. Thus, 340 hours of
execution time would be needed for this program, as opposed to 8,000 for the O(N2)
algorithm. The times given throughout this paper are for a slight modification of the
algorithm to simulate a periodic distance function, which was necessary in the initial
application. This adds a small constant factor to all distance calculations (eighteen
floating point instructions, or about 25% of the running time).

A profiler was used to identify those parts of the program that consumed most
of the processing time [20]. The profiler operates by asynchronously sampling the
computer’s program counter 60 times per second and incrementing the appropriate
bin of a distribution function. The results showed that all but two percent of the
execution time was spent in the TwoNode procedure. This was not unexpected, as
TwoNode is the only part of the algorithm with an order time of O(N log N); the



100 ANDREW W. APPEL

rest of the procedures run in O(N) time. Since TwoNode is relatively small, hand
optimization of the machine code was an obvious step. Writing this procedure in
assembly language resulted in a speedup by a factor of two and a half. This rewriting
used standard techniques, such as keeping more quantities in registers, putting pro-
cedure calls in-line, and using the addressing modes of the VAX more effectively.

At this point we found that the use of the Floating Point Accelerator option on
the VAX significantly improves the performance of the program. The program was
sped up by a factor of two by moving the calculations to a VAX on which an FPA
had been installed.

Many-body calculations usually require double-precision arithmetic because of
the wide range of distances involved. Close orbits are often more than four orders of
magnitude--a dozen binary digits--closer than the distance to a far-away galaxy. Since
the improved algorithm stores all positions relative to the parent clump, this problem
disappears--typically only one order of magnitude, or less, is involved in the difference
between the size of a clump and the size of its parent clump. The use of 32-bit floating
point numbers in place of 64-bit floating point halved the running time of the algorithm.

The factors of two in speed from the use of the Floating Point accelerator and
from the use of single precision are approximate and interdependent. Table 7.1 shows
the running time as a function of these variables.

TABLE 7.1
Running times, in seconds, of an acceleration calculation for 1,000 bodies on a

VAX-11/780.

32-bit floating point 64-bit floating point

With FPA hardware 16 28
Without FPA hardware 25 74

Since tight, "indivisible" clumps are recognized and their small time constant does
not affect the time constant of the universe, far fewer iterations are required. Typically,
such clumps are iterated about four times for each iteration of the universal clump.
Each of those iterations would have been a global iteration in the straightforward
algorithm, as in that algorithm there is no way to detect a tight clump. A conservative
estimate of the number of iterations saved is 50%--a factor of two speedup.

In the astrophysical applications described in 2, in which galaxy clustering occurs,
the development of clusters among the particles simulated leads to greater opportunities
for procedure TwoNode to apply its approximation. The resulting gain is an empirically
observed two-fold speed-up in computation of accelerations.

The program that resulted from these modifications to a very simple iteration
method succeeded in reducing the running time of a simulation from 4,000 hours to
20 hours--a factor of two hundred (for ten thousand bodies, with t 2 0.3). This saving
was achieved by attacking the problem from several angles at once.

8. Conclusions. It is often difficult to make one change in a program that makes
it faster by more than an order of magnitude. In this case, even a change that reduced
the order time of the algorithm from O(N2) to O(N log N) increased the efficiency
for a typical problem size by only a factor of 12--one order of magnitude. The
four-hundred-fold reduction in running time was the product of savings at all levels
of the conceptual hierarchy, from the idea that some galaxies are in systems by
themselves, to the idea that keeping certain points in registers saves memory references



AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION 101

(see Table 8.1). They are in some sense independent--improving the efficiency of one
level of the hierarchy does not preclude improving the efficiency of another. Most
importantly, all of the savings are multiplied together.

Reddy and Newell [18] have characterized the type of problem for which this
multiplicative speedup can be expected: such a problem has four to eight layers of
implementation, such as computer technology, architecture, algorithm, et cetera. Other
programs for the N-body problem have achieved substantial speedups over the most
simplistic implementation, by attacking two or three layers of this hierarchy. This paper
has been concerned with ways to avoid changes in the technology and architecture
layers (i.e., using Cray-1) because of their expense. Rather, the algorithms, "knowledge
sources," and implementation layers have been attacked.

TABLE 8.1
Summary of the speedups attained at various levels.

Speedup
Level factor Description

Algorithm 12
Problem-Specific 2
Knowledge
Algorithm 2
(Problem-Specific)
System-Independent 2
Code Tuning
System-Dependent 2.5
Code Tuning
Hardware 2

Changing to the O(N log N) algorithm
Iterating indivisible clumps by themselves and using closed-form
solutions, thus halving the number of global iterations
Clustering behavior in the simulation produces a clump structure
well-suited to the algorithm
Use of single precision floating point rather than double precision,
made possible by the data structure
Hand-coding the routine where most of the time was spent

Use of the Floating-Point Accelerator

This brings the running time of the algorithm on a relatively small and inexpensive
computer such as the VAX down to what it would be on a large, extremely fast, and
expensive Cray-1. Of this speedup, a factor of about two was attributable to technology
(the use of the Floating Point Accelerator) and two to implementation (hand coding
a critical routine)--these could be done for any program, probably with similar results.
The other factor of a hundred (for ten thousand bodies) came from the exploitation
of the data structure in various ways. The use of a good data structure to provide an
asymptotically fast algorithm is especially important for large problems.

Since the layers of the problem are relatively independent, the technology and
architecture layers are still available for additional speedup factors. If the program
were run on a Cray-1 or a Cyber 205, the 20 hours of runtime might be reduced to
1 or 2 hours, since most of the efficiency improvements described in this paper are
machine-independent, and these computers are much faster than the VAX (and almost
proportionally more expensive).

The data structure is a variant of one already known in the literature (the k-d
tree), but the reorganization of the tree with the Grab procedure changes it substan-
tially-it loses the useful (for some applications) property of being split along planes
of constant x, y, and z, and gains the useful (for this application) property of joining
mutually nearest neighbors at all levels of the hierarchy. For the simulation of gravita-
tional attractions, this turned out to better than halve the number of calculations.



102 ANDREW W. APPEL

Reorganized trees may have other applications as well; for example, the recognition
of individual objects from the point set obtained from a television camera might be
facilitated by an algorithm that could group points together in O(N log N) time. Some
sorts of nearest-neighbor searching might also be made easier.

It is difficult to analyze the properties of the Grab algorithm. It is low-level in
nature: when two points are found to be closer to each other than to their parent
nodes, a local rearrangement is done without regard for the global structure of the
tree. That it works as well as it does was difficult to predict. Its behavior is dependent
on 3, since these closest pairs are detected during the TwoNode procedure; the question
of what 6 to use to most efficiently produce a reorganized tree (independent of
gravitational considerations) might be investigated if reorganized trees are found to
be useful in other applications.

REFERENCES

[1 SVERRE J. AARSETH, J. RICHARD GOTT III AND EDWIN L. TURNER, N-body simulations o’galaxy
clustering; I. Initial conditions and galaxy collapse times, Astrophys. J., 228 (1979), pp. 664-683.

[2] ALFRED V. AHO, JOHN E. HOPCROFT AND JEFFREY D. ULLMAN, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, MA, 1974.

[3] ANDREWW. APPEL, An investigation ofgalaxy clustering using an asymptoticallyfastN-body algorithm,
Undergraduate Thesis, Princeton Univ., Princeton, NJ, April 1981.

[4] JON Louis BENTLEY Multidimensional binary search trees used for associative searching, Comm.
ACM, 18 (1975), pp. 509-517.

[5] JON LOUIS BENTLEY AND JEROME H. FRIEDMAN, Fast algorithms for constructing minimum

spanning trees in coordinate spaces, IEEE Trans. Comput., C-27 (1978), pp. 97ff.
[6] ROLAND BULIRSCH AND JOSEPH STOER, Numerical treatment of ordinary differettial equations by

extrapolation methods, Numer. Math., 8 (1966), pp. 1-13.
[7] EDWARD A. DESLOGE, Classical Mechanics, John Wiley, New York, 1982.
[8] R. H. DICKE AND P. J. E. PEEBLES, The big bang cosmologymenigmas and nostrums, in General

Relativity: An Einstein Centenary Survey, Cambridge Univ. Press, Cambridge, 1979, pp. 504-517.
[9] A. G. DOROSHKEVICH, E. V. KOTOK, I. O. NOVIKOV, A. N. POLYUDOV, YU. G. SIGOV AND

S. F. SHANDARIN, Dvumernaya model obrazovaniya krupnomasshtabnoi struktury vselennoi (A
two-dimensional model of the formation of large-scale structures of the universe), Preprint 83, IPM
AN SSSR (Institute for Problems of Mechanics, Academy of Science, USSR), Moscow, USSR, 1978.

[10] JEROME H. FRIEDMAN, JON LOUIS BENTLEY AND RAPHAEL ARI FINKEL, An algorithm for
finding best matches in logarithmic expected time, ACM Trans. Math. Software, 3 (1977), pp. 209ff.

[11] JEROME H. FRIEDMAN AND MARGARET H. WRIGHT, A nested partitioning procedure for numerical
multiple integration, ACM Trans. Math. Software, 7 (1981), pp. 76ff.

[12] EDWARD J. GROTH, P. JAMES E. PEEBLES, MICHAEL SELDNER AND RAYMOND M. SONEIRA,
The clustering of galaxies, Scientific American, 237 (1977), pp. 76ff.

[13] ROGER W. HOCKNEY AND JAMES W. EASTWOOD, Computer Simulation Using Particles, McGraw-
Hill, New York, 1981

[14] M. JOEVEER, J. EINASTO AND E. TAGO, Yacheiskaya struktura vselennoi (The cell structure of the
universe), Preprint A-l, AN Estonskoi SSR, Tartu, Estonian SSR, USSR, 1977.

[15] R. H. MILLER AND K. H. PRENDERGAST, Stellar dynamics in a discrete phase space, Astrophysical
J., 151 (1968), pp. 699ff.

[16] R. H. MILLER, K. H. PRENDERGAST AND WILLIAM J. QUIRK, Numerical experiments on spiral
structure, Astrophysical J., 161 (1970), pp. 903-916.

17] P. J. E. PEEBLES, The Large-Scale Structure ofthe Universe, Princeton Univ. Press, Princeton, NJ, 1980.
[18] R. REDDY AND ALLEN NEWELL, Multiplicative Speedup of Systems, in Perspectives on Computer

Science, A. K. Jones, ed., Academic Press, New York, 1977, pp. 183-198.
[19] RICHARD M. RUSSELL, The CRAY-1 computer system, in Computer Structures: Principles and

Examples, Daniel P. Siewiorek, C. Gordon Bell, and Allen Newell, eds., McGraw-Hill, New York,
1982, pp. 743-752.



AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION 103

[20] Unix Programmer’s Manual, Computer Science Division, Department of Electrical Engineering and
Computer Science, University of California, Berkeley, CA. Sections lrof(1), !(1), and
contain information about the execution profiler.

21 M. MITCHELLWALDrtor,, The large-scale structure ofthe universe, Science, 219 1983), pp. 1050-1052.
[22] YA. B. ZELDOVICH, The theory of the large scale structure of the universe, IAU symposium #79,

International Astronomical Union, Dordrecht, 1978, pp. 409ff.


