HDF5 /data_exchange group specification, version 4
2010-11-19

Items for an data exchange HDF5 file format
Our goal is to provide a group within a HDF5 file that can be used for simple exchange of images, spectra, and so on with an absolute minimum of required definition. All exchanged items should be in a HDF5 group / exchange or, if multiple datasets are to be shared, such as / exchange1, / exchange2, and so on. At a minimum, programs can simply look for this group and ignore all others. This means that any beamline or instrument can store its own metadata without interfering with the ability for wide exchange.

At a minimum the / exchange group should contain the following array:

· data is an HDF5 dataset that holds the data. When HDF5 looks for and opens a dataset with the name “data”, as part of getting the dataset’s dataspace it will load information on the type of data[] (such as H5T_FLOAT), and the parameters we’ll call n_dimensions and dimensions[] below. (Note: since HDF stores these parameters, we do not create additional HDF5 datasets for just these parameters.) One can then allocate memory as required for data[], and read in as the host computer’s native endian version of that data type (e.g., H5T_NATIVE_FLOAT), convert to another type, and so on. For the purposes of this document we will give a specific name to these two dataspace elements:

· n_dimensions is an integer that tells the rank of data, whether the data that follows is 1D (a spectrum), 2D (an image), 3D (a sequence of images or a volume), 4D (perhaps a sequence of volumes over time or energy, or a 3D array of complex numbers), or more. By reading n_dimensions, you know how many elements to allocate for the integer array dimensions[].

· dimensions[] is an integer array that holds the dimensions of each of the indices. That is, a set of 640x480 pixel images over 120 different energies or wavelengths might have dimensions[]=[640,480,120].

The remaining items are optional; they don’t need to be included, but if any are they should use these agreed-upon names and meanings. See the special note at the end on string lengths and string storage.

· version: a text string that records the version of this file format. By it being text, one can accommodate “1.0.1” or other subversioning schemes. This variable can be useful to allow for backward compatibility if the / exchange format specification is changed.

· complex_index: this is an integer that, if present, tells what dimension holds {real,imaginary} pairs for complex numbers (dimensioning is assumed to start at 0). If absent, or if <0 or >(n_dimensions-1), it is assumed that the array is pure real. For a 640x480 complex array, one might have n_dimensions=3, complex_index=0, and dimensions[]=[2,640,480].

· data_type is one of a set of agreed-upon text strings (allows other strings to be used) that describe the type of data collected:

· transmission (units unspecified)
· optical_density (absorbance with 1 meaning the transmittance was reduced by e-1)

· fluorescence
· energy_loss
· photoelectrons
· diffraction_intensity
· refractive_index: in coherent diffraction imaging, the reconstructed image voxel values might be listed as complex values of transmission or of refractive_index.
· coherent_diffraction_imaging: in coherent diffraction imaging, the reconstructed image voxel values might be listed as complex values of transmission or of refractive_index.
· dark_data[] and white_data[] are optional arrays that must have the same dimensions as data[] which can be used to record either a no-beam noise image, or a no-sample whitefield image. One can store either or both of dark_data[] and white_data[], and they should be in the same units and scaling as data[].

· position_names[], position_units[] and positions[] are arrays containing the center position of each array point along each dimension. Let’s consider the example of a set of 800x600 pixel images acquired over 150 energy loss channels in electron energy loss spectrum imaging. We have n_dimensions=3, dimensions=[800,600,150], position_names[]={X,Y,Energy loss}, position_units[]={microns,microns,ev}, and positions[]={800 X positions in microns, 600 Y positions in microns, and 150 energy values in eV}. That is, we assume for data exchange purposes that all arrays are remapped onto regular grids (no variation of X positions from row to row). The allowed values for position_names[] are:

· primary_ev (energy of primary or incident beam in eV, in case this is scanned)
· detected_ev (energy in electron volts)

· meters (positions in meters)

· microns (positions in micrometers)

· q_inverse_nm (spatial frequencies)

· radians (angles)

· seconds (time).

Note that for complex arrays the values of position_names[complex_index], position_units[complex_index], and positions[]={…, 2 values for real and imaginary, …} are ignored.

·
primary_beam_energy_ev is used for the excitation beam energy in fluorescence, the incident beam energy in electron energy loss, the incident laser photon energy in Raman spectroscopy… Note that one should not specify both a single value for primary_beam_energy_ev, and an array of primary_ev[] values in position_names[], position_units[], and positions[].

· n_specimen_names and specimen_names[] are for strings describing the specimen.

· n_instrument_names and instrument_names[] are for strings describing the instrument used to acquire the data.

· n_experimenter_names and experimenter_names are for strings describing the people involved in preparing and acquiring the experimental data.

· n_original_filenames and original_filenames[] are for strings holding the names of the original data files the data was recorded in.

· n_collection_systimes and collection_systimes[] is for strings that hold the time at which the original data was recorded. If n_collection_systimes is present and not equal to 1, then the last dimension in data[] that matches n_collection_systimes is assumed to be the index that matches the set of times listed in collection_systimes[]; in this way you can record the time at which each image in a tilt series of tuned-energy-series is acquired. These strings are to be in the ISO 8601 date/time format (example: “2009-01-22 16:43:42 UTC-5” which translates into 4:43:42 pm on January 22, 2009, Eastern US time). The time zone information (UTC-5 in this case) is optional.

· n_comment_strings and comment_strings[] are for strings recording any other notes regarding the specimen or experiment.

· n_processing_strings and processing_strings[] are for strings recording information on how the data was processed (what program was used, what parameter settings were employed, and so on).

A note on string storage: nearly all string parameters have both a number-of-strings value and an array-of-strings value; consider for example n_specimen_names and specimen_names[]. If n_specimen_names is not present, a value of n_specimen_names=1 is assumed; otherwise, specimen_names[] is assumed to be an array of n_specimen_names strings, each of identical length. Each string is expected end with null bytes and to be padded with null bytes (\0) until the next string begins. As an example, if n_specimen_names=2 and specimen_names[] is found from the HDF5 file to have a length of 12 bytes, we expect specimen_names[] to contain two 6-byte strings, such as specimen_names=[raw\0\0\0stuff\0].

�needs rework here, since HDF stores the "shape" of the dataset, we do not store that explicitly

�needs to be resolved. HDF5 does not define a complex data type. Suggestion from THG is store [real,imaginary] as another dimension of “data”. How does NeXus do that?

�� Careful! Must be same dimensions as the image part of "data" and this is important if "data" is a series of images.

�NXpositioner group(s)

�Will NXsource work here?

�NXsample

�NXinstrument

�NXuser

�original_data:NXnote

�revise

�NXnote group(s)

�NXprocess group(s)

�revise

PAGE

1 of 1

