HDF5 /image_exchange group specification, version 1
2010-09-27


Items for an image exchange HDF5 file format
All exchanged items should be in a HDF5 group /image_exchange.  At a minimum, programs can simply look for this group and ignore all others.  This means that any beamline or instrument can store its own metadata without interfering with the ability for wide exchange.

At a minimum the /image_exchange group should contain the following parameters:

· n_dimensions is an integer that tells whether the data that follows is 1D (a spectrum), 2D (an image), 3D (a sequence of images or a volume), 4D (perhaps a sequence of volumes over time or energy, or a 3D array of complex numbers), or more.  By reading n_dimensions, you know how many elements to allocate for the integer array dimensions.  Note that like with all HDF5 variables, the writing program can decided whether this is an 8 bit integer, or a 32 bit little-endian integer, or so on; and the reading program can find out how the variable was written to the file and then upon reading convert it to whatever integer type the reading program wants to use. 32 bit integers are suggested but not required.

· dimensions[] is an integer array that holds the dimensions of each of the indices.  That is, a set of 640x480 pixel images over 120 different energies or wavelengths will have dimensions[]=[640,480,120].

· image[] is a 1D array that holds the image specified by dimensions[] (for the example of 640x480 images over 120 photon energies, image[] will be a 1D array with 640x480x120=36,864,000 values). The ordering scheme is to go from the “fast” on down to the slower index.  That is, a 2D array on an X-Y grid is stored as [ix=0,iy=0], [ix=1,iy=0], …, [ix=(nx-1),iy=0], [ix=0,iy=1] and so on.  Note that because HDF5 records the type of the data (float, 16 bit integer, etc.), the reading program should be able to handle reading any of these data types. 
The remaining items are optional; they don’t need to be included, but if any are they should use these agreed-upon names and meanings.  See the special note at the end on string lengths and string storage.

· textstring_bytes: the length in bytes used for all text strings in the /image_exchange group.

· image_exchange_version: a text string that records the version of this file format. By it being text, one can accommodate “1.0.1” or other subversioning schemes.  This variable can be useful to allow for backward compatibility if the /image_exchange format specification is changed.

· complex_index: this is an integer that, if present, tells what dimension holds {real,imaginary} pairs for complex numbers (dimensioning is assumed to start at 0).  If absent, or if <0 or >(n_dimensions-1), it is assumed that the array is pure real. For a 640x480 complex array, one might have n_dimensions=3, complex_index=0, and dimensions[]=[2,640,480].

· image_type is one of a set of agreed-upon text strings that describe the type of data collected: transmission (units unspecified), optical_density (absorbance with 1 meaning the transmittance was reduced by e-1), fluorescence, energy_loss, photoelectrons, diffraction_intensity, refractive_index.  In coherent diffraction imaging, the reconstructed image voxel values might be listed as complex values of transmission or of refractive_index.
· position_names[], position_units[] and positions[] are arrays containing the center position of each array point along each dimension.  Let’s consider the example of a set of 800x600 pixel images acquired over 150 energy loss channels in electron energy loss spectrum imaging.  We have n_dimensions=3, dimensions=[800,600,150], position_names[]={X,Y,Energy loss}, position_units[]={microns,microns,ev}, and positions[]={800 X positions in microns, 600 Y positions in microns, and 150 energy values in eV}.  That is, we assume for data exchange purposes that all arrays are remapped onto regular grids (no variation of X positions from row to row).  The allowed values for position_names[] are ev (energy in electron volts), microns (positions in micrometers), radians (angles), and seconds (time).  Note that for complex arrays the values of position_names[complex_index], position_units[complex_index], and positions[]={…, 2 values for real and imagingary, …} are ignored.
· n_specimen_names and specimen_names[] are for strings describing the specimen. 
· n_instrument_names and instrument_names[] are for strings describing the instrument used to acquire the data.
· n_experimenter_names and experimenter_names are for strings describing the people involved in preparing and acquiring the experimental data. 
· n_original_filenames and original_filenames[] are for strings holding the names of the original data files the data was recorded in.
· collection_systime is a string that is meant to hold the time at which the original data was recorded, in the unix format “2009-01-22 16:43:42 UTC-5” which translates into 4:43:42 pm on January 22, 2009, Eastern US time (UTC-5).  The time zone information (UTC-5 in this case) is optional.
· n_comment_strings  and comment_strings[] are for strings recording any other notes regarding the specimen or experiment.

· n_processing_strings and processing_strings[] are for strings recording information on how the data was processed (what program was used, what parameter settings were employed, and so on). 

A note on string storage: while recent versions of HDF5 allows for variable length strings, for maximum compatibility the exchange format will assume fixed string lengths for all string information.  The parameter textstring_bytes should be the first of any optional parameters in the /image_exchange group; if not, it is assumed that the length of the first string encountered in the optional parameters will set the value of textstring_bytes for the rest of the group.  Also, nearly all string parameters have both a number-of-strings value and an array-of-strings value; consider for example n_specimen_names and specimen_names[].  If n_specimen_names is not present, a value of n_specimen_names=1 is assumed; otherwise, specimen_names[] is assumed to be an array of n_specimen_names strings, each of length textstring_bytes.  Each string is expected end with null bytes and to be padded with null bytes (\0) until the next string begins.  As an example, if textstring_bytes=6 and n_specimen_names=2, we might have specimen_names=[raw\0\0\0stuff\0].
PAGE  


1 of 1

