Register

Offset

Size

Description

PHASE_STATUS

0x0

0x1

A high on bit 5 indicates that the phase-shift on adc1_clk is complete
A high on bit 4 indicates that the phase-shift on adcO_clk is complete
Bit 1 contains the value of adcO_clk sampled with adc1_clk'
Bit O contains the value of adc1_clk sampled with adcO_clk

PHASE_CONTROL

0Ox1

0x1

Bit 5 control the DCM phase shift direction [PSINCDEC] of adc1_clk
Bit 1 control the DCM phase shift direction [PSINCDEC] of adcO_clk
Setting bit 4 will issue a single DCM phase shift step on adc1_clk
Setting bit 0 will issue a single DCM phase shift step on adcO_clk?

MODE_CONTROL

0x2

0x1

Clearing bit 5 will disable the gateware autoconfig for adcl
Clearing bit 4 will disable the gateware autoconfig for adc0
Bit 1 is tied to the MODE pin for adcl

Bit 0 is tied to the MODE pin for adc0?

RESET_CONTROL

0x3

0x1

Setting bit 1 will issue a DDRB and a DCM reset for adcl
Setting bit O will issue a DDRB and a DCM reset for adcO

ADCO_DATA

0x4

0x2

This register contains the DATA to be used when configuring adcO via the
three-wire interface

ADCO_ADDR

0x6

0x1

This register contains the ADDRESS to be used when configuring adcO via
the three-wire interface

ADCO_CONFIG

0x7

0x1

Setting bit 0 will issue a three-wire configuration on adcO
Bit 0 will remain set until the configuration has been completed

ADCI1_DATA

0x8

0x2

This register contains the DATA to be used when configuring adcl via the
three-wire interface

ADC1_ADDR

Oxa

0x1

This register contains the ADDRESS to be used when configuring adcl via
the three-wire interface

ADCI1_CONFIG

0xb

0x1

Setting bit 0 will issue a three-wire configuration on adcl
Bit 0 will remain set until the configuration has been completed

This is used for testing whether adcO_clk is aligned with adc1_clk
See Xilinx datasheet
See AT84ADO001B datasheet for details on MODE behaviour




Python Use Cases

Increase phase of ADCO clock by a single DCM tap without affecting auto-configuration
fpga.blindwrite('iadc_controller','%c%c%c%c'%(0x0, 0x03, 0xff, 0x0), offset=0x0)

Decrease phase of both ADC clocks by a single DCM tap without affecting auto-configuration
fpga.blindwrite('iadc_controller','%c%c%c%c'%(0x0, 0x11, 0xff, 0x0), offset=0x0)

Enable manual configuration and write an 'SPI' value to ADCO

spi_data = 0x1234

spi_addr = 0x02

#set mode bit high and disable autoconfiguration logic for adcO

#also ensure that autoconfiguration is left enable for adcl
fpga.blindwrite('iadc_controller','%c%c%c%c'%(0x0, 0x0, 0x21, 0x0), offset=0x0)
#write spi data into iadc data register
fpga.blindwrite('iadc_controller','%c%c%c%c'%((spi_data & 0xff00) >>8, spi_data & Oxff,
spi_addr, Ox1), offset=0x4)

#reset both adc clock and decms; make sure mode and autoconfig bits remain the same
fpga.blindwrite('iadc_controller','%c%c%c%c'%(0x0, 0x0, 0x21, 0x3), offset=0x0)
#there is no need to de-assert the reset



