This comes from OpenMPI webpage: I prefer the second method based on gdb. As Tim mentioned, eclipse should have similar way to launch parallel terminals.
There are two common ways to use serial debuggers:
1. Attach to individual MPI processes after they are running.
For example, launch your MPI application as normal with mpirun. Then login to the node(s) where your application is running and use the --pid option to gdb to attach to your application.
An inelegant-but-functional technique commonly used with this method is to insert the following code in your application where you want to attach:
	{
 int i = 0;
 char hostname[256];
 gethostname(hostname, sizeof(hostname));
 printf("PID %d on %s ready for attach\n", getpid(), hostname);
 fflush(stdout);
 while (0 == i)
 sleep(5);
}

This code will output a line to stdout outputting the name of the host where the process is running and the PID to attach to. It will then spin on the sleep() function forever waiting for you to attach with a debugger. Using sleep() as the inside of the loop means that the processor won't be pegged at 100% while waiting for you to attach.
Once you attach with a debugger, go up the function stack until you are in this block of code (you'll likely attach during the sleep()) then set the variable i to a nonzero value. With GDB, the syntax is:
	(gdb) set var i = 7

Then set a breakpoint after your block of code and continue execution until the breakpoint is hit. Now you have control of your live MPI application and use the full functionality of the debugger.
You can even add conditionals to only allow this "pause" in the application for specific MPI processes (e.g., MPI_COMM_WORLD rank 0, or whatever process is misbehaving).
2. Use mpirun to launch xterms (or equivalent) with serial debuggers.
This technique launches a separate window for each MPI process in MPI_COMM_WORLD, each one running a serial debugger (such as gdb) that will launch and run your MPI application. Having a separate window for each MPI process can be quite handy for low process-count MPI jobs, but requires a bit of setup and configuration that is outside of Open MPI to work properly. A naieve approach would be to assume that the following would immediately work:
	[bookmark: _GoBack]shell$ mpiexec -np 4 xterm -e gdb my_mpi_application

Unfortunately, it likely won't work. Several factors must be considered:
1. What launcher is Open MPI using? In an rsh/ssh environment, Open MPI will default to using ssh when it is available, falling back to rsh when ssh cannot be found in the $PATH. But note that Open MPI closes the ssh (or rsh) sessions when the MPI job starts for scalability reasons. This means that the built-in SSH X forwarding tunnels will be shut down before the xterms can be launched. Although it is possible to force Open MPI to keep its SSH connections active (to keep the X tunneling available), we recommend using non-SSH-tunneled X connections, if possible (see below).
2. In non-rsh/ssh environments (such as when using resource managers), the environment of the process invoking mpirun may be copied to all nodes. In this case, the DISPLAY environment variable may not be suitable.
3. [bookmark: serial-debuggers]Some operating systems default to disabling the X11 server from listening for remote/network traffic. For example, see this post on the user's mailing list, describing how to enable network access to the X11 on Fedora Linux.
4. There may be intermediate firewalls or other network blocks that prevent X traffic from flowing between the hosts where the MPI processes (and xterms) are running and the host connected to the output display.
The easiest way to get remote X applications (such as xterm) to display on your local screen is to forego the security of SSH-tunneled X forwarding. In a closed environment such as an HPC cluster, this may be an acceptable practice (indeed, you may not even have the option of using SSH X forwarding if you SSH logins to cluster nodes are disabled), but check with your security administrator to be sure.
If using non-encrypted X11 forwarding is permissable, we recommend the following:
5. For each non-local host where you will be running an MPI process, add it to your X server's permission list with the xhost command. For example:
	shell$ cat my_hostfile
inky
blinky
stinky
clyde
shell$ for host in `cat my_hostfile` ; do xhost +host ; done

6. Use the -x option to mpirun to export an appropriate DISPLAY variable so that the launched X applications know where to send their output. An appropriate value is usually (but not always) the hostname containing the display where you want the output and the :0 (or :0.0) suffix. For example:
	shell$ hostname
arcade.example.come
shell$ mpirun -np 4 --hostfile my_hostfile \
 -x DISPLAY=arcade.example.com:0 xterm -e gdb my_mpi_application

Note that X traffic is fairly "heavy" -- if you are operating over a slow network connection, it may take some time before the xterm windows appear on your screen.
7. If your xterm supports it, the -hold option may be useful. -hold tells xterm to stay open even when the application has completed. This means that if something goes wrong (e.g., gdb fails to execute, or unexpectedly dies, or ...), the xterm window will stay open allowing you to see what happened, instead of closing immediately and losing whatever error message may have been output.
8. When you have finished, you may wish to disable X11 network permissions from the hosts that you were using. Use xhost again to disable these permissions:
	shell$ for host in `cat my_hostfile` ; do xhost -host ; done

Note that mpirun will not complete until all the xterms complete.

